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We present an analytical theory for the gate electrostatics and the classical and quantum capacitance of the
graphene nanoribbons �GNRs� and compare it with the exact self-consistent numerical calculations based on
the tight-binding p-orbital Hamiltonian within the Hartree approximation. We demonstrate that the analytical
theory is in a good qualitative �and in some aspects quantitative� agreement with the exact calculations. There
are however some important discrepancies. In order to understand the origin of these discrepancies we inves-
tigate the self-consistent electronic structure and charge density distribution in the nanoribbons and relate the
above discrepancy to the inability of the simple electrostatic model to capture the classical gate electrostatics
of the GNRs. In turn, the failure of the classical electrostatics is traced to the quantum mechanical effects
leading to the significant modification of the self-consistent charge distribution in comparison to the noninter-
acting electron description. The role of electron-electron interaction in the electronic structure and the capaci-
tance of the GNRs is discussed. Our exact numerical calculations show that the density distribution and the
potential profile in the GNRs are qualitatively different from those in conventional split-gate quantum wires; at
the same time, the electron distribution and the potential profile in the GNRs show qualitatively similar
features to those in the cleaved-edge overgrown quantum wires. Finally, we discuss an experimental extraction
of the quantum capacitance from experimental data.
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I. INTRODUCTION

Graphene, a two-dimensional �2D� honeycomb structure
of carbon atoms, has attracted a lot of interest since its iso-
lation in 2004.1 It demonstrates unique properties which
originate from the Dirac-type spectrum of low-energy quasi-
particles. Nowadays, graphene is considered to be a viable
alternative to Si for the channel of field-effect transistors
�FETs�.2 One of the main characteristics of such devices is a
capacitance formed between the channel and the gate. The
capacitance is important for understanding fundamental elec-
tronic properties of the material such as the density of states
�DOS� as well as device performance including the I-V char-
acteristics and the device operation frequency.

In a classical regime, the capacitance describes the capa-
bility of an object to store electrical charges and is com-
pletely determined by the object’s geometry and a dielectric
constant of the medium. If the object’s size shrinks to a nan-
ometer scale, quantum effects have to be taken in account.
One of manifestations of these effects is a finite DOS which
originates from the Pauli exclusion principle. Low-
dimensional systems, having a small DOS, are not able to
accumulate enough charge to completely screen the external
field. In order to describe the effect of the electric field pen-
etration through a two-dimensional electronic gas �2DEG�
Luryi introduced a concept of a quantum capacitance.3

Recently, the quantum capacitance of a bulk graphene
layer deposited on a gated SiO2 insulated surface has been
investigated by means of scanning probe microscopy.4 To the
best of our knowledge, no studies of the gate capacitance of
the graphene nanoribbons �GNRs� have been reported yet.
However, such studies are already technologically feasible.
Indeed, during last years the great progress has been
achieved in fabrication and patterning of the GNRs �Refs.

5–8� as well as in controlling the morphology, geometry, and
stability of the graphene edges.9,10 On the other hand, the
quantum and classical capacitance of related structures—
carbon nanotubes has been measured and analyzed by a
number of groups during the last years.11–14 The later studies
have revealed a number of interesting properties of the sys-
tem at hand including the structure of the DOS and signa-
tures of the electron interaction and correlation.

In order to provide physical insight into the gate electro-
statics and capacitance of the GNRs, it is important to de-
velop intuitive analytical models capturing the essential
physics of the device at hand. Such models are also impera-
tive in experimental measurements because the quantum ca-
pacitance is not directly accessible in the experiments and
can only be indirectly extracted from the measured total ca-
pacitance. In the present paper we develop a basic analytical
theory for the gate electrostatics and the classical and quan-
tum capacitance of the GNRs. We complement this analytical
theory by exact self-consistent numerical calculations based
on the tight-binding p-orbital Hamiltonian within the Hartree
approximation. We demonstrate that the analytical theory is
in a good qualitative �and in some aspects quantitative�
agreement with the exact calculations. There are however
some important discrepancies. In order to understand the ori-
gin of these discrepancies we investigate the self-consistent
electronic structure and charge density distribution in the na-
noribbons and relate the above discrepancy to the inability of
the simple electrostatic model to capture the classical gate
electrostatics of the GNRs. In turn, the failure of the classical
electrostatics is traced to the quantum mechanical effects
leading to the significant modification of the self-consistent
charge distribution in comparison to the noninteracting elec-
tron description.

It should be noted that particular aspects of the self-
consistent gate electrostatics and the electron structure of the
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GNRs �Ref. 15� and the numerical16 and analytical17 studies
of quantum capacitance of the GNRs have been reported in
the literature. In particular, the quantum capacitance of the
GNRs as a function of the Fermi energy, CQ=CQ�EF�, has
been studied in Ref. 17. Experimentally, however, the depen-
dence of CQ on the Fermi energy is not accessible, and we
stress that the focus of our analytical and numerical analysis
is the gate capacitance, C=C�Vg�—the characteristic that is
measured experimentally �Vg being the gate voltage�.

The paper is organized as follows. In Sec. II we formulate
the basics of our model of the gated GNRs. The analytical
treatment of the gate electrostatics and the quantum and clas-
sical gate capacitance of GNRs is given in Sec. III. The
results of the self-consistent numerical calculations and a
comparison between the analytical and numerical calcula-
tions are presented and discussed in Sec. IV. Section V sum-
marizes the main conclusions.

II. MODEL

In experiments graphene samples are separated from the
gate by a relatively thick insulating substrate �of a typical
width of at least 300 nm� in order to enable visual identifi-
cation of the graphene sheet. This simplest experimental
setup �with a single back gate� is not particularly suitable for
measurements of the quantum capacitance because in this
case �as we will demonstrate below� the total capacitance is
completely dominated by the classical contribution and can
hardly be extracted from the measured total capacitance. In
order to distinguish the quantum contribution the gate should
be placed much closer to the ribbon such that the classical
capacitance CC becomes comparable to the quantum one. In
our study we therefore consider an embedded top-gate geom-
etry shown in Fig. 1 where a graphene ribbon of the width w
is placed on a thick dielectric layer and covered by the sec-
ond much thinner layer of the width d separating it from the
top gate with the applied gate voltage Vg. This top-gate ge-
ometry was used by Ilani et al.11 and Natori et al.18 for mea-
surements of the quantum capacitance of carbon nanotubes.
We also assume that the GNR is connected to the source and

drain electrods playing a role of ideal reservoirs supplying
electrons to the ribbon. The experimental setup might also
include the back gate which can, independently of the top
gate, adjust a position of the Dirac point in the graphene
nanoribbon, and hence change its electron density. However
we assume that the back gate is situated much further apart
from the ribbon in comparison to the top gate, and therefore
for the sake of simplicity we in our model disregard a pos-
sible capacitative coupling between the ribbon and the back
gate.

In this paper we considered two representative structures,
�I� HfO2 insulating layer with d=30 nm and �r=47,15,19,20

and �II� SiO2 insulating layer with d=300 nm and �r=3.9.
For the first structure CC is comparable to CQ, whereas for
the second one CC�CQ. We limit our calculations to the
case of the armchair GNRs, whereas we expect that the main
results and conclusions presented in this paper can be ex-
tended to the case of the zigzag GNRs. �Note that we do not
focus on any specific peculiarities of the DOS near the Dirac
point like surface states in the case of zigzag ribbons�. The
spin effects and the effect of disorder are outside the scope of
our paper and are deferred to future studies. All results cor-
respond to the metallic armchair GNRs with the width w
=12 nm �N=98�. We also made calculations for a semicon-
ductor armchair GNR as well as for wider ribbons �w
=50 nm� and all the results show the same features.

The system presented on Fig. 1 is described by the stan-
dard p-orbital tight-binding Hamiltonian21,22

H = �
r

VH�r�ar
+ar − �

r,�
tr,r+�ar

+ar+�, �1�

where tr,r+�=2.5 eV is a nearest-neighbor hopping integral;
VH�r� is a Hartree potential at the site r which results from
the Coulomb interaction between extra charges in the system
�including the mirror charges�,15,23–25

VH�r� =
e2

4��0�r
�

r��r

q�r��� 1

�r − r��
−

1
��r − r��2 + 4d2� ,

�2�

where q�r� is the local electron occupation, and the second
term in the parenthesis corresponds to the mirror charges.
The summation in Eq. �2� can be split into two parts corre-
sponding to the A and B sublattices of graphene �see Fig.
1�b�	. Changing summation to integration in the i direction
we obtain,

VH�rij� = −
e2

4��0�r
�

j�=1�j��j�

N
qA�j�� + qB�j��

2

� ln
�rij − rij��

2

�rij − rij��
2 + 4d2 , �3�

where qA�B��j�� is the charge on the carbon atom which is
located on the j� line and corresponds to the A�B� sublattice.

We solve Eq. �1� numerically to find the Green’s function
using the technique described by Xu et al.26 This technique
greatly facilitates computation speed since it does not require
self-consistent calculation of the surface Green’s function.
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FIG. 1. �Color online� �a� A schematic diagram illustrating a
top-gate geometry where an infinitely long graphene nanoribbon of
the width w is embedded in a gate insulator with the relative dielec-
tric constant �r; d is the distance between the ribbon and the top
gate. It is assumed that the graphene nanoribbon is connected to the
source and drain reservoirs supplying electrons to the ribbon. �b� An
armchair graphene ribbon of the width N. Unit cell consisting of 2N
sites is marked with dashed rectangle. All the results presented in
this paper correspond to N=98�w=12 nm�.
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The Green’s function in the real-space representation,
G�r ,r�, provides an information about the local density of
states �LDOS� at site r,

��r,E� = −
2

�S
I
�G�r,r�	� , �4�

where factor 2 indicates a spin degeneracy and S= a2�3
4 is the

area corresponding to one carbon atom in the graphene lat-
tice, with a=0.246 nm being the lattice constant. The LDOS
can be used to calculate the local electron density at the site
r,

n�r,EF� = �
eVC

EF

dE��r,E�fFD�E − EF� , �5�

where EF=eVg is Fermi energy and fFD is the Fermi-Dirac
distribution function. �All the calculations reported in this
paper correspond to the temperature T=0 K.� The position
of the charge neutrality point eVC at a given gate voltage Vg
is determined numerically from the calculated dispersion re-
lation. For example, for the armchair GNRs, the position of
the charge neutrality point eVC corresponds to the energy
which gives the minimum number of propagating states with
the smallest absolute value of the wave vector. Note, that in
order to achieve a fast convergence, the itegration in Eq. �5�
is performed in a complex plane, since on the real E axis
��r ,E� is a rapidly varying function of the energy �see Refs.
23 and 24 for details�.

Since the Hartree potential VH �3� depends on the electron
density n�r� which is a solution of the Schrödinger equation
with the Hamiltonian �1�, these equations need to be solved
iteratively. The iteration process is executed until the conver-

gence criterion is met, �
Vout

m −Vin
m

Vout
m +Vin

m �	10−5, where Vin
m and Vout

m are
the input and output average values of the Hartree potential
on the m-th iteration. In order to accelerate convergence we
used the Broyden’s second method,27 which allows us to
reduce the number of iterations to 8–10 in comparison to
40–50 iterations needed with the “simple mixing” method.

Having calculated the electron density and the position of
the Dirac point numerically, we are in position to find the
total, quantum and classical capacitances as a function of the
gate voltage, see Sec. IV for details. The analytical approach
to the quantum and classical capacitance of the GNRs is
described in the next section.

III. CLASSICAL AND QUANTUM CAPACITANCE OF
GRAPHENE NANORIBBONS: AN ANALYTICAL MODEL

The electronic structure of planar gated graphene sheets
was studied by Fernández-Rossier et al.15 In this section we
follow the approach outlined by Fernández-Rossier et al.15

and provide an analytical description of the one-dimensional
charge density and quantum and classical capacitance of the
graphene nanoribbons.

Application of the gate voltage Vg to a metallic gate in-
duces extra carriers with the density n to the nanoribbon as
well as extra carriers of the opposite polarity to the gate
itself. �Note that the gate and the ribbon represent together a

charge neutral system�. The application of the gate voltage
shifts the chemical potential 
 of the ribbon from the charge
neutrality point 
0,15

eVg = 
 − 
0, �6�

It is convenient to represent this shift as a sum of two terms


 − 
0 = eVC + eVQ, �7�

where eVC describes the position of the charge neutrality
point at the applied voltage Vg, and eVQ describes the change
in the chemical potential due to the filling of the quantum
mechanical energy bands, see Fig. 2 for illustration. For a
classical conductor the density of states is infinite and thus
VQ=0. This provides a natural interpretation of VC as a clas-
sical electrostatic potential, whereas the potential VQ has a
quantum mechanical origin reflecting the structure of the
quantum-mechanical density of states. Using a relation

Vg = VQ + VC, �8�

which follows from Eqs. �6� and �7� and using a definition of
a capacitance C= e�n

�V , we obtain15

-0.1 -0.05 0.0 0.05 0.1
k (1/a)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

E
(e

V)
E

(e
V)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

VC

VQ

Vg

�

�0

~~ ~~

FIG. 2. �Color online� A diagram illustrating the change in the
band structure of the graphene nanoribbon. Application of the gate
voltage Vg results in a shift of the chemical potential from the
charge neutrality point 
0 to 
. This shift can be presented as a sum
of two contributions, eVC, the rigid shift of bands, and eVQ, the shift
of the chemical potential with respect to the charge neutrality point
leading to an electron doping of the system. The displayed diagram
corresponds to the HfO2 structure with d=30 nm and Vg=0.5 V.
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Ctot
−1 = CC

−1 + CQ
−1, �9�

where the total capacitance Ctot=
e�n
�Vg

, and the classical and
the quantum-mechanical capacitances are respectively CC

= e�n
�VC

and CQ= e�n
�VQ

.
In order to find the total capacitance for a given gate

voltage we have to calculate the electron density n. The later
at the zero temperature is given by

n = �
−�




��E�dE − �
−�


0

�0�E�dE , �10�

where �0�E� is the density of states for a charge neutral rib-
bon �
=
0�, ��E� is the DOS at 
=
0+eVg. �In the follow-
ing we will refer to the case Vg=0 as to an uncharged ribbon,
and to the case of Vg�0 as a charged ribbon.� In the ana-
lytical model we assume that application of the gate voltage
results in a rigid shift of the bands on the value eVC and does
not change their relative position in respect to the charge
neutrality point

��E� = �0�E − eVC� . �11�

In the next section we will demonstrate that this approxima-
tion holds extremely well despite of some modifications of
the band structure for higher gate voltages. Substituting Eq.
�11� into Eq. �10� and performing the change in variables, the
density of the extra carriers reads15

n = �
eVC




��E�dE = �

0


0+eVQ

�0�E�dE , �12�

which means that the extra carriers occupy the bands in the
energy interval between the charge neutrality point and the
chemical potential.

The DOS of graphene armchair nanoribbons can be writ-
ten in the form �see Appendix A�

�0�E� =
4

��3ta
�

n

�E�
�E2 − En

2
���E� − �En�� , �13�

where n=0, 1, 2, . . ., a=0.246 nm is the graphene lat-
tice constant �note that

�3
2 ta=vF� with vF being the Fermi

velocity�, and En are the subband threshold energies whose
analytical expressions are provided by Onipko28 �see Appen-
dix A for the explicit expressions for En�. Substituting this
expression of the DOS into Eq. �12�, we obtain for the one-
dimensional �1D� electron density of the nanoribbon,

n�VQ� =
4

��3ta
�

n

��eVQ�2 − En
2���eVQ� − �En�� , �14�

where n=0, 1, 2, . . .. Here and hereafter without loss of
generality we set 
0=0. Using the definition of the quantum
capacitance we get,17

CQ =
e � n

�VQ
= e2�0�eVQ� . �15�

In order to calculate CQ from the above equation we have to
know the position of the chemical potential with respect to
the charge neutrality point of the charged ribbon, eVQ. This

can be done from Eq. �8�, where the classical electrostatic
potential can be easily calculated using the standard method
of images �see Appendix B for details�,

VC =
�

��0�r
�2d arctan

w

4d
+

w

4
ln�1 + �4d

w
�2�� , �16�

�the definitions of w and d are given in Fig. 1�. In the deri-
vation of this expression we assumed that the surface charge
density of the graphene nanoribbon �=n /w is constant �as
expected for a classical capacitor�. We will discuss the valid-
ity of this assumption in the next section. The classical ca-
pacitance �per unit length� of the graphene nanoribbon fol-
lows from Eq. �16�,

CC =
e � n

�VC
= ��0�rw�2d arctan

w

4d
+

w

4
ln�1 + �4d

w
�2��−1

.

�17�

Note that in the limit of a narrow ribbon, w�d, the above
expression simplifies to CC=2��0�r / ln4d

w .
To summarize, Eqs. �8�, �9�, and �14�–�17� provide the

analytical expressions for the 1D electron density and the
total, quantum, and classical capacitances of the graphene
nanoribbons. In order to express the density and the capaci-
tances as a function of the gate voltage Vg �rather than VQ
which is not accessible experimentally� we first choose some
value of VQ and calculate n and CQ from Eqs. �14� and �15�.
We then use the calculated values in Eqs. �16� and �17� to
find corresponding VC and CC. Finally, relating VQ to Vg via
Eq. �8�, we express the density and the capacitances as a
function of the gate voltage Vg.

IV. RESULTS AND DISCUSSION

Figure 3 shows the analytical and numerical densities and
capacitances for two representative nanoribbon structures in-
troduced in Sec. II. The left column corresponds to the 30
nm HfO2 dielectric structure with �r=47, and the right col-
umn corresponds to a conventional 300 nm SiO2 structure
with �r=3.9. The analytical results are based on the expres-
sions given by Eqs. �8�, �9�, and �14�–�17� and show the
electron density n, the total, quantum, and classical capaci-
tances Ctot, CQ, CC �Figs. 3�a�–3�d�, respectively	.

The numerical results are based on the self-consistent so-
lution of Eqs. �1�–�5� as described in Sec. II. We first calcu-
late the electron density as a function of the gate voltage and
then differentiate it numerically in order to compute the total
capacitance, Ctot=

e�n
�Vg

, see Figs. 3�a� and 3�b� respectively.
Figure 3�c� shows the quantum capacitance CQ which is cal-
culated from the DOS on the basis of Eq. �15� �note that
�0�E�= 1

2N�r��r ,E�, where ��r ,E� is the LDOS given by Eq.
�4�, and summation is performed over one unit cell contain-
ing 2N sites�. Having calculated Ctot and CQ we compute the
classical capacitance from Eq. �9� as CC

−1=Ctot
−1−CQ

−1, see Fig.
3�d�.

The total capacitance Ctot for both structures shows char-
acteristic features that can be traced to the corresponding
features in the quantum capacitance CQ, �cf. Figs. 3�b� and
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3�c�	. Because the quantum capacitance is proportional to the
DOS �see Eq. �15�	 the peaks in CQ signal consecutive popu-
lation of electron subbands as the gate voltage increases.
Note that these features in Ctot are much less pronounced for
the case of a conventional SiO2 structure because its classical
capacitance is much smaller than the quantum one �CQ /CC
40�, whereas for the HfO2 structure this ratio is only 2
�note that the quantum and classical capacitances are added
in series, Eq. �9�	.

The comparison of the analytical and numerical calcula-
tions demonstrates that the analytical theory qualitatively re-
produces the exact results very well. There is however some
quantitative discrepancy in the values of both quantum and
classical capacitances. In particular, the analytical classical
capacitance differs by 20%–35% from its exact numerical
value, see Fig. 3�d�. For the case of the SiO2 structure the
numerical CC shows a slow increase as Vg increases. This is
in apparent contrast with the behavior of its analytical coun-
terpart which is independent of the applied voltage. As far as
the quantum capacitance is concerned, a visual inspection of
Fig. 3�c� indicates that the analytical and numerical CQ
would coincide if one stretches the scale of Vg for the ana-
lytical capacitance �alternatively contracts the scale of Vg for
the numerical capacitance�.

In order to understand the differences between the analyti-
cal and the exact results let us critically inspect the assump-
tions that have been made in the derivation of the analytical
expressions in the previous section. Let us start with the
classical capacitance CC given by Eq. �17�. In its derivation
�see Appendix B� we assumed that the induced charge den-
sity is homogeneous and the potential of the ribbon is con-
stant as expected for a classical conductor. Figures 4�b� and
4�c� show, respectively, the electron density distributions and
the Hartree potential for the various nanoribbon structures
for different values of VQ and thus for different densities n
�Note that the amount of the induced charge density n is
completely determined by the value of VQ defining the posi-
tion of the Fermi energy with respect to the charge neutrality
point, Eqs. �12� and �14�. For a reference purpose, the values
of VQ are indicated at the corresponding dispersion relations
shown in Fig. 4�a�	. In order to outline the role of the
electron-electron interaction we show both the self-
consistent Hartree and the noninteracting one-electron calcu-
lations �respectively, right and left parts of the panels in Fig.
4�.

The electron density distribution in the GNRs shows the
pronounced oscillation between neighboring sites. We there-
fore also show the electron density averaged over several
neighboring sites, Fig. 4�b�. For a small gate voltage �HfO2
structure, Vg=0.1 V� when only the first subband is filled the
averaged electron density distribution is almost uniform and
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FIG. 3. �Color online� The analytical and numerical dependen-
cies on the applied gate voltage of �a� the electron density n, �b� the
total capacitance Ctot, �c� the quantum capacitance CQ, and �d� the
classical capacitance CC. �c� also shows the “extracted” quantum
capacitance �see text for details�. Left and right panels corresponds,
respectively, to HfO2 and SiO2 structures.
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there is practically no difference between the self-consistent
and the one-electron approaches. By increasing the gate volt-
age to Vg=0.5 V more carriers are induced and the electron
density increases near the edges of the structure due to the
electrostatic repulsion. It is important to stress that it is not
only the concentration of the induced charge but primarily
the applied gate voltage that determine the charge density
distribution. Figure 4�b� shows the electron-density distribu-
tion and the potential profile for the SiO2 structure for the
gate voltage Vg=5.75 V. This gate voltage is chosen such
that the value of VQ=0.25 eV is the same as for the HfO2
structure with Vg=0.5 V �see Fig. 4�a�	, i.e., the induced
charge concentrations are similar. However, the density dis-
tribution profile for the SiO2 structure is strikingly different
showing a strong redistribution of the charges toward the
edges when the applied voltage is increased. The larger the
applied voltage, the stronger the redistribution of the electron
density. This explains the observation that the numerical CC
gradually changes when the gate voltage is increased �see
Fig. 3�d�, right panel	. We therefore conclude that the as-
sumptions appropriate for a classical capacitor �the charge
density is homogeneous and the potential of the ribbon VC is
constant� are violated for the graphene nanoribbons which
leads to the difference between the analytical theory and the
exact numerical calculations.

Note that the macroscopic charge accumulation along the
boundaries of the graphene strip was discussed by Silvestrov
and Efetov.29 Their semiclassical approach and the exact nu-
merical calculations presented here demonstrate that the den-
sity distribution and the potential profile in the GNRs are
qualitatively different from those in conventional split-gate
quantum wires with a smooth electrostatic confinement
where the potential is rather flat and the electron density is
constant throughout the wire.23 At the same time, the elec-
tron distribution and the potential profile in the GNR are
very similar to those in the cleaved-edge overgrown quantum
wires �CEOQW�. Indeed, the potential profile in the CEO-
QWs also exhibits triangular-shaped quantum wells in the
vicinity of the wire boundaries and the electron density is
also strongly enhanced close to the edges.24 This similarity
simply reflects the fact that both the CEOQWs and the GNRs
correspond to the case of the hard-wall confinement at the
edges of both structures. Let us now discuss the quantum
capacitance CQ and the difference between the corresponding
analytical and numerical results. The crucial assumption used
in the analytical model is that an application of the gate
voltage Vg simply shifts the bands on the amount VC such
that the DOS of the GNR remains unchanged relatively to
the charge neutrality point for any Vg, Eq. �11�. Because the
amount of the induced charges is completely determined by
the value of VQ �Eq. �14��, this assumption implies that the
dependence n=n�VQ� obtained by both analytical and nu-
merical calculations should coincide. In order to verify this
assumption we compare the evolution of the band diagram
for structures with different classical capacitances for differ-
ent gate voltages. Figure 5�a� shows the dispersion relation
for HfO2 and SiO2 structures where the gate voltages Vg are
chosen such that VQ is the same in both cases �VQ=0.25 V
for Vg

HfO2 =0.5 V and Vg
SiO2 =5.75 V�. �For comparison we

also display the dispersion relations for noninteracting elec-

trons�. Even though the equal values of VQ imply the same
induced charge density, the changes of the dispersion rela-
tions are quite different. In the considered Vg interval the
dispersion relation of the HfO2 structure remains practically
unchanged, and therefore the analytical and the numerical
dependencies for n=n�VQ� as well as for CQ=CQ�VQ� are
almost undistinguished �see Figs. 5�b� and 5�c�, left panels	.
Modification of the band structure is much stronger for the
case of the SiO2 structure with smaller CC. This is also re-
flected in the analytical and numerical dependencies n
=n�VQ� exhibiting a difference up to 15% in the considered
gate voltage interval. However, despite of this difference for
n=n�VQ� the corresponding difference between the analytical
and numerical results for CQ=CQ�VQ� is practically negli-
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FIG. 5. �Color online� �a� The dispersion relations for the non-
interacting and the Hartree electrons �left and right parts of the
diagrams, respectively�. For the Hartree case the dispersion relation
is calculated for VQ=0.25 V; the corresponding values of Vg are
indicated above the figure. �b� Analytical �solid lines� and numerical
�dashed lines� electron concentration n and �c� quantum capacitance
CQ as a function of the Fermi energy level with respect to the Dirac
point �VQ�. The dotted lines serve as a guide to compare the ana-
lytical and numerical electron densities calculated for VQ=0.25 V.
The insets in �b� show the dependence of VQ on the applied gate
voltage Vg. Left and right panels corresponds respectively to HfO2

and SiO2 structures.
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gible even for the SiO2 structure, see Figs. 5�b� and 5�c�,
right column.

The reason for the modification of the band structure can
be understood from the analysis of the potential distribution
shown in Fig. 4�c�. In order to shift VQ on the same value
one should apply a higher gate voltage to the structure with a
smaller classical capacitance. Different gate voltages applied
to different structures produce the same shift of VQ but give
rise to different distributions of the electrostatic potential
across the nanoribbon. The difference between the electro-
static potential at the middle of the ribbon and at the edges,
�VH, is an order of magnitude higher for the structure with
smaller CC. Since the ribbon width w is the same for both
structures, this leads to higher effective transverse electric

field Ē
�VH

w/2 for the case of SiO2 structure, which, in turn,
modifies the band structure of the GNR. Note that the effect
of the electric field on the band structure and the DOS of
graphene nanoribbons was reported before by many authors,
resulting in, e.g., the energy gap modulation for semiconduc-
tor armchair ribbons30 or opening of the energy gap for the
case of zigzag ribbons.31 This effect was also observed in
bilayer structures making possible tuning of energy gap.32

We demonstrated above that the analytical and the nu-
merical dependencies CQ=CQ�VQ� show an excellent agree-
ment in the considered gate voltage intervals both for HfO2
and SiO2 structures �i.e., the utilization of Eq. �11� is fully
justified	. However, the analytical and numerical dependen-
cies VQ=VQ�Vg� show some discrepancy, see insets to Fig.
5�b�. This, in turn, leads to a discrepancy between the ana-
lytical and numerical CQ as a function of Vg as shown in Fig.
3�c�. This discrepancy is manifest itself in the difference of
the gate voltage scale and not in the difference of the mag-
nitudes of CQ. Using Eqs. �8� and �9�, the change in VQ can
be easily related co the change in Vg,

�VQ

�Vg
=

Ctot

CQ
= �1+

CQ

CC
�−1.

Because for a given VQ the analytical and numerical CQ are
practically the same, the difference between the analytical
and numerical dependencies

�VQ

�Vg
is primarily due to the dif-

ference of the corresponding classical capacitances CC. We
therefore conclude that the discrepancy between the analyti-
cal and numerical CQ as a function of Vg is related to the
difference in the corresponding classical capacitances.

Let us now discuss experimental determination of the
quantum capacitance CQ. In our both analytical and numeri-
cal approaches we are in position to calculate CQ directly. In
contrast, CQ is not directly accessible in experiments. For
example, for the case of carbon nanotubes it is the total ca-
pacitance Ctot that is measured experimentally. The quantum
capacitance CQ is then extracted from Ctot according to Eq.
�9�, CQ

−1=Ctot
−1−CC

−1, where CC is a corresponding analytical
expression for the classical capacitance of a nanotube �i.e., a
classical capacitance between a metallic cylinder and an in-
finite plane�.11,13 Our calculations presented above demon-
strate that for the graphene nanoribbons the numerical CC
differs from its classical analytical expression given by Eq.
�17�. Therefore, a question arises, to what extent one can rely
on the above procedure for the extraction of the quantum
capacitance?

In order to answer this question let us assume that our
numerically calculated Ctot �shown in Fig. 3�b�	 corresponds

to the experimental data. We then assume that the classical
capacitance of the GNR is given by the analytical expression
�17� describing a capacitance between a metallic strip and an
infinite plane. Finally, the quantum capacitance �which we
will call “extracted,” CQ

extracted� is obtained by subtracting CC
from the “measured” Ctot according to Eq. �9�. The extracted
quantum capacitance is shown in Fig. 3�c�. For the case of
the HfO2 structure �where CC�CQ�, the behavior of CQ

extracted

is qualitatively similar to that of the numerical CQ, even
though their values differ significantly. However, for the case
of SiO2 structure �where CC�CQ� the extracted quantum
capacitance CQ

extracted does not reproduce the numerical CQ
even qualitatively with all the features related to the quantum
mechanical DOS being completely lost. This is simply re-
lated to the fact that due to the series addition of the capaci-
tances, for the case of CC�CQ the total capacitance is com-
pletely dominated by the classical one, and the features in CQ
can be reproduced only when CC becomes comparable to CQ.
It is interesting to note that the difference between the ex-
perimentally extracted quantum capacitance and its expected
value was detected for the case of the carbon nanotubes and
was attributed to the strong electron correlation and signa-
tures of the Luttinger liquid behavior.13 Our calculations in-
dicate that the origin of such deviations can have a rather
simple explanation related to the inability of a standard elec-
trostatics to reproduce quantitatively the classical capaci-
tance of the structure at hand.

V. CONCLUSIONS

In the present paper we develop an analytical theory for
gate electrostatics and classical and quantum capacitance of
GNRs. We compare the analytical theory with the exact self-
consistent numerical calculations based on the tight-binding
p-orbital Hamiltonian within the Hartree approximation.

We find that the analytical theory is in a good qualitative
�and in some aspects quantitative� agreement with the exact
calculations. There are however some important discrepan-
cies. In order to understand the origin of these discrepancies
we investigate the self-consistent electronic structure and the
charge density distribution in the GNRs obtained from the
exact numerical calculations. We demonstrate that the as-
sumptions appropriate for a classical capacitor �the charge
density is homogeneous and the potential of the conductor is
constant� are violated for the graphene nanoribbons which
leads to the difference between the analytical theory and the
numerical calculations. In turn, the failure of the classical
electrostatics is traced to the quantum mechanical effects
leading to the significant modification of the self-consistent
charge distribution in comparison to the noninteracting elec-
tron pictures. We also show that as a result of electron-
electron interaction the band structure of the GNRs modifies
as the applied gate voltage increases.

Our exact numerical calculations show that the density
distribution and the potential profile in the GNRs are quali-
tatively different from those in conventional split-gate quan-
tum wires with a smooth electrostatic confinement where the
potential is rather flat and the electron density is constant
throughout the wire. At the same time, the electron distribu-
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tion and the potential profile in the GNR are very similar to
those in the CEOQW exhibiting triangular-shaped quantum
wells in the vicinity of the wire boundaries accompanied by
the corresponding enhancement of the electron density close
to the edges. This similarity reflects the fact that both the
CEOQWs and the GNRs correspond to the case of the hard-
wall confinement at the edges of the structure.

Finally, we discuss experimental determination of the
quantum capacitance CQ. We demonstrate that the extracted
CQ might significantly deviate from its actual value given by
the density of states of the GNRs. This deviation is related to
the inability of the standard electrostatics to reproduce quan-
titatively the classical capacitance of the structure at hand.
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APPENDIX A: DENSITY OF STATES OF GRAPHENE
NANORIBBONS

The density of states of a quantum wire �including a fac-
tor 2 for the spin degeneracy� reads,

��E� = � 2

�
��

n
�dEn�k�,k�n�

dk�
�−1

, �A1�

where k��E� and k�n denote the longitudinal �continuous� and
the transverse �quantized� components of the wave vector,
respectively. The summation in Eq. �A1� includes all trans-
verse modes which energy En�E. The dispersion relation
for the nanoribbon of the width N in the low-energy limit
close to the Dirac point is given by Onipko,28

E��k�� = 
�3

2
ta��k� − k̄�

��2 + k�n
�2 , �A2�

where �=A ,Z corresponds to the armchair �A� and zigzag
�Z� GNRs. The transverse wave vector k�n

A is given by dif-
ferent expressions depending on whether 2�N+1�

3 is integer
�metallic nanoribbon� or not �semiconducting nanoribbon�,

k�n
A = �

��n�
N + 1�1 +

�n

4�3�N + 1�
�a, metallic

�

N + 1
�n −

1

3
�a, semiconducting � , �A3�

n=0, 1, 2, . . .. For the zigzag structures, the transverse
wave vector k�n

Z has a form:

k�n
Z =

��n +
1

2
�

2�3N
, �A4�

n=0,1 ,2 , . . .. The parameter k̄�n
� describes the shift of n-th

dispersion branch minima respect to the Brillouin zone cen-
ter,

k̄�n
� = �0 for � = A

2

3
� +

�3

4
k�n

�2 for � = Z � �A5�

Using Eq. �A2� in Eq. �A1�, we obtain for the DOS of the
armchair �zigzag� ribbon

���E� =
4

��3ta
�

n

�E�
�E2 − En

�2
���E� − �En�� , �A6�

where n=0, 1, 2, . . . for the armchair GNRs and n
=0,1 ,2 , . . . for the zigzag GNRs, and En

�= 
�3
2 tak�n

� are the
subband threshold energies. The electron density at zero tem-
perature is obtained by the integration of the DOS from the
charge neutrality point 
0=0 to the Fermi energy, n
=�0

EF�dE,

n��EF� =
4

��3ta
�

n

�EF
2 − En

�2���EF� − �En
��� . �A7�

APPENDIX B: CAPACITANCE OF A CONDUCTING
STRIP

In this Appendix we calculate the electrostatic potential
and the classical capacitance between a long metallic strip of
the width w and a semi-infinite conducting plate situated at
the distance d from the strip as illustrated in Fig. 6�a�. The
potential between the strip and the plate is given by

V = �
0

d

E�y�dy , �B1�

where we choose the integration path along the y axis pass-
ing through the middle of the strip �x=0�, and E�y� is the
electric field intensity along the integration path. Note that
because of the symmetry of the system the electric field
along the y axis has only the y component, E�x=0,y�
=Ey�y�y�E�y�y.

In order to calculate the electric field we use the method
of images and replace the structure at hand by two oppositely
charged strips as illustrated in Fig. 6�b�. The electric field
E�y� is then given by

E�y� = Estrip�y� + Estrip�2d − y� , �B2�

where the second term corresponds to the mirror charges and

y

2d

-σ

+σ

y

x x

0 0

w

V
d

+σ

a) b)

FIG. 6. �a� The capacitance formed between the metallic strip of
width w located at the distance d apart from the infinite conducting
plate; �b� application of the method of images to the system.
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Estrip�y� =
�

��0�r
arctan� w

2y
� �B3�

is the electric field intensity along the y axis passing through
the middle of the conducting strip with the surface electron
density �. The last expression is obtained in a standard way
by dividing the strip into infinitely narrow strips of the width
dw→0 �which can be regarded as the line charges� and sum-
ming up their contributions to the electric field intensity at
the point y at the y axis. Substituting Eqs. �B2� and �B3� into

Eq. �B1� and performing integration, we obtain

V =
�

��0�r
�2d arctan

w

4d
+

w

4
ln�1 + �4d

w
�2�� , �B4�

Finally, the capacitance of the system is computed according
to its definition

C =
Q

V
= ��0�rw�2d arctan

w

4d
+

w

4
ln�1 + �4d

w
�2��−1

.

�B5�
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